A Note on Mean-variance Hedging of Non-attainable Claims
نویسنده
چکیده
A market is described by two correlated asset prices. But only one of them is traded while the contingent claim is a function of both assets. We solve the mean-variance hedging problem completely and prove that the optimal strategy consists of a modi ed pure hedge expressible in terms of the obervation process and a Merton-type investment.
منابع مشابه
Mean-Variance Hedging under Additional Market Information
In this paper we analyse the mean-variance hedging approach in an incomplete market under the assumption of additional market information, which is represented by a given, finite set of observed prices of non-attainable contingent claims. Due to no-arbitrage arguments, our set of investment opportunities increases and the set of possible equivalent martingale measures shrinks. Therefore, we obt...
متن کاملA Note on the Fundamental Theorem of Asset Pricing under Model Uncertainty
We show that the recent results on the Fundamental Theorem of Asset Pricing and the super-hedging theorem in the context of model uncertainty can be extended to the case in which the options available for static hedging (hedging options) are quoted with bid-ask spreads. In this set-up, we need to work with the notion of robust no-arbitrage which turns out to be equivalent to no-arbitrage under ...
متن کاملMarket value margin via mean-variance hedging
We use mean-variance hedging in discrete time in order to value an insurance liability. The prediction of the insurance liability is decomposed into claims development results, that is, yearly deteriorations in its conditional expected values until the liability is finally settled. We assume the existence of a tradeable derivative with binary pay-off written on the claims development result and...
متن کاملVariance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets
We consider the discretized version of a (continuous-time) two-factor model introduced by Benth and coauthors for the electricity markets. For this model, the underlying is the exponent of a sum of independent random variables. We provide and test an algorithm, which is based on the celebrated Föllmer-Schweizer decomposition for solving the mean-variance hedging problem. In particular, we estab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000